trueno/src/shaders/shader_trile.glsl

239 lines
6.2 KiB
GLSL

@vs vs_trile
in vec4 position;
in vec4 normal;
in vec4 centre;
in vec4 instance;
layout(binding=0) uniform trile_vs_params {
mat4 mvp;
vec3 camera;
};
out vec3 cam;
out vec3 to_center;
out vec3 vpos; // The actual position;
out vec3 ipos; // Trile space position;
out vec4 fnormal;
void main() {
gl_Position = mvp * vec4(position.xyz + instance.xyz, 1.0);
fnormal = normal;
to_center = centre.xyz - position.xyz;
vpos = position.xyz + instance.xyz;
ipos = position.xyz;
cam = camera;
}
@end
@fs fs_trile
layout(binding=1) uniform trile_world_config {
vec3 skyBase;
vec3 skyTop;
vec3 sunDisk;
vec3 horizonHalo;
vec3 sunHalo;
vec3 sunLightColor;
vec3 sunPosition;
float sunIntensity;
float skyIntensity;
int hasClouds;
int hasPlane;
float planeHeight;
int planeType;
float time;
};
in vec3 cam;
in vec3 to_center;
in vec3 vpos;
in vec3 ipos;
in vec4 fnormal;
out vec4 frag_color;
layout(binding = 0) uniform texture2D triletex;
layout(binding = 0) uniform sampler trilesmp;
const float PI = 3.1412854;
// --- SKY START ---
const float cirrus = 0.5;
const float cumulus = 20.0;
float hash(float n)
{
return fract(sin(n) * 43758.5453123);
}
float noise(vec3 x)
{
vec3 f = fract(x);
float n = dot(floor(x), vec3(1.0, 157.0, 113.0));
return mix(mix(mix(hash(n + 0.0), hash(n + 1.0), f.x),
mix(hash(n + 157.0), hash(n + 158.0), f.x), f.y),
mix(mix(hash(n + 113.0), hash(n + 114.0), f.x),
mix(hash(n + 270.0), hash(n + 271.0), f.x), f.y), f.z);
}
const mat3 m = mat3(0.0, 1.60, 1.20, -1.6, 0.72, -0.96, -1.2, -0.96, 1.28);
float fbm(vec3 p)
{
float f = 0.0;
f += noise(p) / 2.0; p = m * p * 1.1;
f += noise(p) / 4.0; p = m * p * 1.2;
f += noise(p) / 6.0; p = m * p * 1.3;
f += noise(p) / 12.0; p = m * p * 1.4;
f += noise(p) / 24.0;
return f;
}
vec3 filmic_aces(vec3 v)
{
v = v * mat3(
0.59719f, 0.35458f, 0.04823f,
0.07600f, 0.90834f, 0.01566f,
0.02840f, 0.13383f, 0.83777f
);
return (v * (v + 0.0245786f) - 9.0537e-5f) /
(v * (0.983729f * v + 0.4329510f) + 0.238081f) * mat3(
1.60475f, -0.53108f, -0.07367f,
-0.10208f, 1.10813f, -0.00605f,
-0.00327f, -0.07276f, 1.07602f
);
}
vec3 sky(vec3 skypos, vec3 sunpos) {
vec3 sunCol = sunDisk.xyz;
vec3 baseSky = skyBase.xyz;
vec3 topSky = skyTop.xyz;
float sDist = dot(normalize(skypos), normalize(sunpos));
vec3 npos = normalize(skypos);
vec3 skyGradient = mix(baseSky, topSky, clamp(skypos.y * 2.0, 0.0, 0.7));
vec3 final = skyGradient;
final += sunHalo.xyz * clamp((sDist - 0.95) * 10.0, 0.0, 0.8) * 0.2;
// Sun disk
if(sDist > 0.9999) {
final = sunDisk.xyz;
}
// Horizon halo
final += mix(horizonHalo.xyz, vec3(0.0,0.0,0.0), clamp(abs(npos.y) * 80.0, 0.0, 1.0)) * 0.1;
final = vec3(final);
// Cirrus Clouds
if(hasClouds == 1) {
float density = smoothstep(1.0 - cirrus, 1.0, fbm(npos.xyz / npos.y * 2.0 + time * 0.05)) * 0.3;
final.rgb = mix(final.rgb, vec3(1.0, 1.0, 1.0), max(0.0, npos.y) * density * 2.0);
}
return final;
}
// ---- SKY END ----
float DistributionGGX(vec3 N, vec3 H, float roughness) {
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) {
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
void main() {
//frag_color = vec4((fnormal.xyz + vec3(1.0, 1.0, 1.0)) * 0.5, 1.0);
vec3 pos_after_adjust = ipos - fnormal.xyz * 0.02;
int count = 0;
vec4 trixel_material;
while (count < 5) {
int xpos = int(clamp(pos_after_adjust.z, 0.0001, 0.99999) * 16.0);
int ypos = int(clamp(pos_after_adjust.y, 0.0001, 0.99999) * 16.0);
int zpos = int(clamp(pos_after_adjust.x, 0.0001, 0.99999) * 16.0);
trixel_material = texelFetch(sampler2D(triletex, trilesmp), ivec2(xpos, ypos + zpos * 16), 0);
if (length(trixel_material) > 0.01) break; // @ToDo: Replace with proper null trixel check.
pos_after_adjust += to_center * 0.1;
count++;
}
vec3 albedo = trixel_material.xyz;
int packedMaterial = int(round(trixel_material.w*255.0));
float emittance = float((packedMaterial >> 1) & 0x3) / 3.0;
int roughnessInt = (packedMaterial >> 5) & 0x7;
float roughness = max(float(roughnessInt) / 7.0, 0.05);
float metallic = float((packedMaterial >> 3) & 0x3) / 3.0;
// Ambient light.
vec3 light = 0.2 * albedo;
vec3 N = normalize(fnormal.xyz);
vec3 V = normalize(cam - vpos.xyz);
vec3 L = normalize(sunPosition);
vec3 H = normalize(V + L);
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0);
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001;
vec3 specular = numerator / denominator;
float NdotL = max(dot(N, L), 0.0);
vec3 kD = vec3(1.0) - F;
kD *= 1.0 - metallic;
light += (kD * albedo / PI + specular) * NdotL * sunLightColor * sunIntensity;
vec3 R = reflect(-V, N);
vec3 modifier = vec3(1.0);
if(R.y < 0.0) {
R = reflect(R, vec3(0.0,1.0,0.0));
modifier = vec3(0.7, 0.9, 0.7);
}
vec3 samp = sky(R, sunPosition);
// light += F * samp * modifier;
frag_color = vec4(vec3(light), 1.0);
}
@end
@program trile vs_trile fs_trile