@vs vs_trile in vec4 position; in vec4 normal; in vec4 centre; in vec4 instance; layout(binding=0) uniform trile_vs_params { mat4 mvp; vec3 camera; }; out vec3 cam; out vec3 to_center; out vec3 vpos; // The actual position; out vec3 ipos; // Trile space position; out vec4 fnormal; void main() { gl_Position = mvp * vec4(position.xyz + instance.xyz, 1.0); fnormal = normal; to_center = centre.xyz - position.xyz; vpos = position.xyz + instance.xyz; ipos = position.xyz; cam = camera; } @end @fs fs_trile layout(binding=1) uniform trile_world_config { vec3 skyBase; vec3 skyTop; vec3 sunDisk; vec3 horizonHalo; vec3 sunHalo; vec3 sunLightColor; vec3 sunPosition; float sunIntensity; float skyIntensity; int hasClouds; int hasPlane; float planeHeight; int planeType; float time; }; in vec3 cam; in vec3 to_center; in vec3 vpos; in vec3 ipos; in vec4 fnormal; out vec4 frag_color; layout(binding = 0) uniform texture2D triletex; layout(binding = 0) uniform sampler trilesmp; const float PI = 3.1412854; // --- SKY START --- const float cirrus = 0.5; const float cumulus = 20.0; float hash(float n) { return fract(sin(n) * 43758.5453123); } float noise(vec3 x) { vec3 f = fract(x); float n = dot(floor(x), vec3(1.0, 157.0, 113.0)); return mix(mix(mix(hash(n + 0.0), hash(n + 1.0), f.x), mix(hash(n + 157.0), hash(n + 158.0), f.x), f.y), mix(mix(hash(n + 113.0), hash(n + 114.0), f.x), mix(hash(n + 270.0), hash(n + 271.0), f.x), f.y), f.z); } const mat3 m = mat3(0.0, 1.60, 1.20, -1.6, 0.72, -0.96, -1.2, -0.96, 1.28); float fbm(vec3 p) { float f = 0.0; f += noise(p) / 2.0; p = m * p * 1.1; f += noise(p) / 4.0; p = m * p * 1.2; f += noise(p) / 6.0; p = m * p * 1.3; f += noise(p) / 12.0; p = m * p * 1.4; f += noise(p) / 24.0; return f; } vec3 filmic_aces(vec3 v) { v = v * mat3( 0.59719f, 0.35458f, 0.04823f, 0.07600f, 0.90834f, 0.01566f, 0.02840f, 0.13383f, 0.83777f ); return (v * (v + 0.0245786f) - 9.0537e-5f) / (v * (0.983729f * v + 0.4329510f) + 0.238081f) * mat3( 1.60475f, -0.53108f, -0.07367f, -0.10208f, 1.10813f, -0.00605f, -0.00327f, -0.07276f, 1.07602f ); } vec3 sky(vec3 skypos, vec3 sunpos) { vec3 sunCol = sunDisk.xyz; vec3 baseSky = skyBase.xyz; vec3 topSky = skyTop.xyz; float sDist = dot(normalize(skypos), normalize(sunpos)); vec3 npos = normalize(skypos); vec3 skyGradient = mix(baseSky, topSky, clamp(skypos.y * 2.0, 0.0, 0.7)); vec3 final = skyGradient; final += sunHalo.xyz * clamp((sDist - 0.95) * 10.0, 0.0, 0.8) * 0.2; // Sun disk if(sDist > 0.9999) { final = sunDisk.xyz; } // Horizon halo final += mix(horizonHalo.xyz, vec3(0.0,0.0,0.0), clamp(abs(npos.y) * 80.0, 0.0, 1.0)) * 0.1; final = vec3(final); // Cirrus Clouds if(hasClouds == 1) { float density = smoothstep(1.0 - cirrus, 1.0, fbm(npos.xyz / npos.y * 2.0 + time * 0.05)) * 0.3; final.rgb = mix(final.rgb, vec3(1.0, 1.0, 1.0), max(0.0, npos.y) * density * 2.0); } return final; } // ---- SKY END ---- float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } void main() { //frag_color = vec4((fnormal.xyz + vec3(1.0, 1.0, 1.0)) * 0.5, 1.0); vec3 pos_after_adjust = ipos - fnormal.xyz * 0.02; int count = 0; vec4 trixel_material; while (count < 5) { int xpos = int(clamp(pos_after_adjust.z, 0.0001, 0.99999) * 16.0); int ypos = int(clamp(pos_after_adjust.y, 0.0001, 0.99999) * 16.0); int zpos = int(clamp(pos_after_adjust.x, 0.0001, 0.99999) * 16.0); trixel_material = texelFetch(sampler2D(triletex, trilesmp), ivec2(xpos, ypos + zpos * 16), 0); if (length(trixel_material) > 0.01) break; // @ToDo: Replace with proper null trixel check. pos_after_adjust += to_center * 0.1; count++; } vec3 albedo = trixel_material.xyz; int packedMaterial = int(round(trixel_material.w*255.0)); float emittance = float((packedMaterial >> 1) & 0x3) / 3.0; int roughnessInt = (packedMaterial >> 5) & 0x7; float roughness = max(float(roughnessInt) / 7.0, 0.05); float metallic = float((packedMaterial >> 3) & 0x3) / 3.0; // Ambient light. vec3 light = 0.2 * albedo; vec3 N = normalize(fnormal.xyz); vec3 V = normalize(cam - vpos.xyz); vec3 L = normalize(sunPosition); vec3 H = normalize(V + L); vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0); float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; vec3 specular = numerator / denominator; float NdotL = max(dot(N, L), 0.0); vec3 kD = vec3(1.0) - F; kD *= 1.0 - metallic; light += (kD * albedo / PI + specular) * NdotL * sunLightColor * sunIntensity; vec3 R = reflect(-V, N); vec3 modifier = vec3(1.0); if(R.y < 0.0) { R = reflect(R, vec3(0.0,1.0,0.0)); modifier = vec3(0.7, 0.9, 0.7); } vec3 samp = sky(R, sunPosition); // light += F * samp * modifier; frag_color = vec4(vec3(light), 1.0); } @end @program trile vs_trile fs_trile