trueno/modules/Tacoma/raytrace.comp.glsl

702 lines
25 KiB
GLSL

#version 460
#extension GL_EXT_scalar_block_layout : require
#extension GL_GOOGLE_include_directive : require
#include "../common.h"
#extension GL_EXT_ray_query : require
precision highp float;
const float PI = 3.14159265359;
layout(local_size_x = WORKGROUP_WIDTH, local_size_y = WORKGROUP_HEIGHT, local_size_z = 1) in;
layout(binding = BINDING_IMAGEDATA, set = 0, scalar) buffer storageBuffer
{
vec3 imageData[];
};
layout(binding = BINDING_TLAS, set = 0) uniform accelerationStructureEXT tlas;
layout(binding = BINDING_VERTICES, set = 0, scalar) buffer Vertices
{
vec3 vertices[];
};
layout(binding = BINDING_INDICES, set = 0, scalar) buffer Indices
{
uint indices[];
};
layout(binding = BINDING_COLORS, set = 0, scalar) buffer Color
{
vec4 colors[];
};
layout(binding = BINDING_ORIGINS, set = 0) buffer LayoutPixels
{
LayoutPixel layoutbuf[];
};
layout(binding = BINDING_DEPTH, set = 0, scalar) buffer Depths
{
vec3 depthData[];
};
layout(push_constant) uniform PushConsts
{
PushConstants pushConstants;
};
// GGX
float ggx (vec3 N, vec3 V, vec3 L, float roughness, float F0) {
float alpha = roughness*roughness;
vec3 H = normalize(L - V);
float dotLH = max(0.0, dot(L,H));
float dotNH = max(0.0, dot(N,H));
float dotNL = max(0.0, dot(N,L));
float alphaSqr = alpha * alpha;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (3.141592653589793 * denom * denom);
float F = F0 + (1.0 - F0) * pow(1.0 - dotLH, 5.0);
float k = 0.5 * alpha;
float k2 = k * k;
return dotNL * D * F / (dotLH*dotLH*(1.0-k2)+k2);
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
// This clamp is different than in the exercise 7 instructions
return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
float DistributionGGX(vec3 N, vec3 H, float roughness) {
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) {
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float GGXPDF(vec3 wo, vec3 wi, vec3 normal, float roughness) {
return (GeometrySchlickGGX(dot(wi, normal), roughness) * GeometrySchlickGGX(dot(wo, normal), roughness)) / GeometrySchlickGGX(dot(wi, normal), roughness);
}
vec3 SampleVndf_GGX(vec2 u, vec3 wi, float alpha, vec3 n)
{
// decompose the vector in parallel and perpendicular components
vec3 wi_z = n * dot(wi, n);
vec3 wi_xy = wi - wi_z;
// warp to the hemisphere configuration
vec3 wiStd = normalize(wi_z - alpha * wi_xy);
// sample a spherical cap in (-wiStd.z, 1]
float wiStd_z = dot(wiStd, n);
float phi = (2.0f * u.x - 1.0f) * PI;
float z = (1.0f - u.y) * (1.0f + wiStd_z) - wiStd_z;
float sinTheta = sqrt(clamp(1.0f - z * z, 0.0f, 1.0f));
float x = sinTheta * cos(phi);
float y = sinTheta * sin(phi);
vec3 cStd = vec3(x, y, z);
// reflect sample to align with normal
vec3 up = vec3(0, 0, 1);
vec3 wr = n + up;
float wrz_safe = max(wr.z, 1e-6);
vec3 c = dot(wr, cStd) * wr / wrz_safe - cStd;
// compute halfway direction as standard normal
vec3 wmStd = c + wiStd;
vec3 wmStd_z = n * dot(n, wmStd);
vec3 wmStd_xy = wmStd_z - wmStd;
// warp back to the ellipsoid configuration
vec3 wm = normalize(wmStd_z + alpha * wmStd_xy);
// return final normal
return wm;
}
float pdf_vndf_isotropic(vec3 wo, vec3 wi, float alpha, vec3 n)
{
float alphaSquare = alpha * alpha;
vec3 wm = normalize(wo + wi);
float zm = dot(wm, n);
float zi = dot(wi, n);
float nrm = inversesqrt((zi * zi) * (1.0f - alphaSquare) + alphaSquare);
float sigmaStd = (zi * nrm) * 0.5f + 0.5f;
float sigmaI = sigmaStd / nrm;
float nrmN = (zm * zm) * (alphaSquare - 1.0f) + 1.0f;
return alphaSquare / (PI * 4.0f * nrmN * nrmN * sigmaI);
}
// ----- SKY SHADER -------
const float time = 0.0;
const float cirrus = 0.5;
const float cumulus = 0.6;
vec4 skyBase = vec4(0.3843, 0.8117, 0.9568, 1.0); //vec4(0.3843, 0.8117, 0.9568, 1.0);
vec4 skyTop = vec4(0.17, 0.4, 0.95, 1.0); //vec4(0.17, 0.4, 0.95, 1.0);
vec4 sunDisk = vec4(1.0, 1.0, 1.0, 1.0); //vec4(1.0, 1.0, 1.0, 1.0);
vec4 horizonHalo = vec4(1.0, 1.0, 1.0, 1.0); //vec4(1.0, 1.0, 1.0, 1.0);
vec4 sunHalo = vec4(1.0, 1.0, 1.0, 1.0); //vec4(1.0, 1.0, 1.0, 1.0);
float hash(float n)
{
return fract(sin(n) * 43758.5453123);
}
float noise(vec3 x)
{
vec3 f = fract(x);
float n = dot(floor(x), vec3(1.0, 157.0, 113.0));
return mix(mix(mix(hash(n + 0.0), hash(n + 1.0), f.x),
mix(hash(n + 157.0), hash(n + 158.0), f.x), f.y),
mix(mix(hash(n + 113.0), hash(n + 114.0), f.x),
mix(hash(n + 270.0), hash(n + 271.0), f.x), f.y), f.z);
}
const mat3 m = mat3(0.0, 1.60, 1.20, -1.6, 0.72, -0.96, -1.2, -0.96, 1.28);
float fbm(vec3 p)
{
float f = 0.0;
f += noise(p) / 2.0; p = m * p * 1.1;
f += noise(p) / 4.0; p = m * p * 1.2;
f += noise(p) / 6.0; p = m * p * 1.3;
f += noise(p) / 12.0; p = m * p * 1.4;
f += noise(p) / 24.0;
return f;
}
vec3 sky(vec3 skypos, vec3 sunpos) {
vec3 sunCol = sunDisk.xyz;
vec3 baseSky = skyBase.xyz;
vec3 topSky = skyTop.xyz;
float sDist = dot(normalize(skypos), normalize(sunpos));
vec3 npos = normalize(skypos);
vec3 skyGradient = mix(baseSky, topSky, clamp(skypos.y * 2.0, 0.0, 0.7));
vec3 final = skyGradient;
final += sunHalo.xyz * clamp((sDist - 0.95) * 10.0, 0.0, 0.8) * 0.2;
// Sun disk
if(sDist > 0.9999) {
final = sunDisk.xyz;
}
// Horizon halo
final += mix(horizonHalo.xyz, vec3(0.0,0.0,0.0), clamp(abs(npos.y) * 80.0, 0.0, 1.0)) * 0.1;
final = vec3(final);
// Cirrus Clouds
float density = smoothstep(1.0 - cirrus, 1.0, fbm(npos.xyz / npos.y * 2.0 + time * 0.05)) * 0.3;
final.rgb = mix(final.rgb, vec3(1.0, 1.0, 1.0), max(0.0, npos.y) * density * 2.0);
final += noise(skypos * 1000.0) * 0.02;
return final;
}
// --- END SKY ----
// Random number generation using pcg32i_random_t, using inc = 1. Our random state is a uint.
uint stepRNG(uint rngState)
{
return rngState * 747796405 + 1;
}
// Steps the RNG and returns a floating-point value between 0 and 1 inclusive.
float stepAndOutputRNGFloat(inout uint rngState)
{
// Condensed version of pcg_output_rxs_m_xs_32_32, with simple conversion to floating-point [0,1].
rngState = stepRNG(rngState);
uint word = ((rngState >> ((rngState >> 28) + 4)) ^ rngState) * 277803737;
word = (word >> 22) ^ word;
return float(word) / 4294967295.0f;
}
// Returns the color of the sky in a given direction (in linear color space)
vec3 skyColor(vec3 direction)
{
// +y in world space is up, so:
if(direction.y > 0.0f)
{
return mix(vec3(1.0f), vec3(0.25f, 0.5f, 1.0f), direction.y);
}
else
{
return vec3(0.03f);
}
}
vec3 randomSpherePoint(vec3 rand) {
float ang1 = (rand.x + 1.0) * PI; // [-1..1) -> [0..2*PI)
float u = rand.y; // [-1..1), cos and acos(2v-1) cancel each other out, so we arrive at [-1..1)
float u2 = u * u;
float sqrt1MinusU2 = sqrt(1.0 - u2);
float x = sqrt1MinusU2 * cos(ang1);
float y = sqrt1MinusU2 * sin(ang1);
float z = u;
return vec3(x, y, z);
}
vec3 randomHemispherePoint(vec3 rand, vec3 n) {
vec3 v = randomSpherePoint(rand);
vec3 v2 = v * sign(dot(v, n));
if(length(v2) < 0.0001) {
return n;
}
return v2;
}
struct HitInfo
{
vec3 color;
vec3 worldPosition;
vec3 worldNormal;
vec3 emission;
int isWater;
float metallic;
float roughness;
};
HitInfo getObjectHitInfo(rayQueryEXT rayQuery)
{
HitInfo result;
// Get the ID of the triangle
const int primitiveID = rayQueryGetIntersectionPrimitiveIndexEXT(rayQuery, true);
uint offset = rayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetEXT(rayQuery, true);
int colorOffset = rayQueryGetIntersectionInstanceCustomIndexEXT(rayQuery, true);
// Get the indices of the vertices of the triangle
const uint i0 = indices[offset + 3 * primitiveID + 0];
const uint i1 = indices[offset + 3 * primitiveID + 1];
const uint i2 = indices[offset + 3 * primitiveID + 2];
// Get the vertices of the triangle
const vec3 v0 = vertices[i0];
const vec3 v1 = vertices[i1];
const vec3 v2 = vertices[i2];
// Get the barycentric coordinates of the intersection
vec3 barycentrics = vec3(0.0, rayQueryGetIntersectionBarycentricsEXT(rayQuery, true));
barycentrics.x = 1.0 - barycentrics.y - barycentrics.z;
// Compute the coordinates of the intersection
const vec3 objectPos = v0 * barycentrics.x + v1 * barycentrics.y + v2 * barycentrics.z;
const mat4x3 objectToWorld = rayQueryGetIntersectionObjectToWorldEXT(rayQuery, true);
result.worldPosition = objectToWorld * vec4(objectPos, 1.0f);
const vec3 objectNormal = cross(v1 - v0, v2 - v0);
// Transform normals from object space to world space. These use the transpose of the inverse matrix,
// because they're directions of normals, not positions:
const mat4x3 objectToWorldInverse = rayQueryGetIntersectionWorldToObjectEXT(rayQuery, true);
result.worldNormal = normalize((objectNormal * objectToWorldInverse).xyz);
result.emission = vec3(0);
if(colorOffset == 121212) {
result.color = vec3(0.9, 0.9, 1.0);
result.isWater = 1;
return result;
}
// Calculate position inside the model, and use it to get the color for the trixel...
//result.color = vec3(objectPos.x, objectPos.y, objectPos.z);
const vec3 objectTexturePos = objectPos - objectNormal * 0.005;
int cx = int(objectTexturePos.z * 16);
int cy = int(objectTexturePos.y * 16);
int cz = int(objectTexturePos.x * 16);
if(cx > 15) cx = 15;
if(cy > 15) cy = 15;
if(cz > 15) cz = 15;
vec4 color = colors[colorOffset + cx + cy * 16 + cz * 16 * 16];
result.color = color.xyz;
// result.color = vec3(0.5, 0.2, 0.6);
int packedMaterial = int(color.w * 255.0);
float emittance = float((packedMaterial >> 1) & 0x3) / 3.0;
result.roughness = max(float((packedMaterial >> 5) & 0x7) / 7.0, 0.01);
result.metallic = float((packedMaterial >> 3) & 0x3) / 3.0;
bool roughFlag = (packedMaterial & 0x1) != 0;
if(emittance > 0) {
result.color = vec3(1.0, 1.0, 1.0);
result.emission = result.color * 50.0 * emittance;
}
// result.color = vec3(float(cx) / 15.0, float(cy) / 15.0, 0.0);
// result.color = vec3(result.worldNormal);
result.isWater = 0;
const float dotX = dot(result.worldNormal, vec3(0.0, 1.0, 0.0));
return result;
}
vec3 wave(vec4 wave, vec3 p, inout vec3 tangent, inout vec3 binormal) {
float steepness = wave.z;
float wavelength = wave.w;
float k = 2.0 * 3.141 / wavelength;
float c = 2.0;
vec2 d = normalize(vec2(wave.x, wave.y));
float f = k * (dot(d, p.xz) - c * (0.0 * 0.3));
float a = steepness / k;
tangent += vec3(
-d.x * d.x * (steepness * sin(f)),
d.x * (steepness * cos(f)),
-d.x * d.y * (steepness * sin(f))
);
binormal += vec3(
-d.x * d.y * (steepness * sin(f)),
d.y * (steepness * cos(f)),
-d.y * d.y * (steepness * sin(f))
);
return vec3(
d.x * (a * cos(f)),
a * sin(f),
d.y * (a * cos(f))
);
}
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// from spherical coordinates to cartesian coordinates
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// from tangent-space vector to world-space sample vector
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
vec3 BRDF_spec_ggx(vec3 normal, vec3 incoming, vec3 outgoing, vec3 color, float metallic, float roughness) {
vec3 N = normal;
vec3 L = outgoing;
vec3 V = incoming;
vec3 H = normalize(V + L);
vec3 F0 = vec3(0.04);
F0 = mix(F0, color, metallic);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0);
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001;
vec3 specular = numerator / denominator;
vec3 kD = vec3(1.0) - F;
kD *= 1.0 - metallic;
return specular;
}
vec3 BRDF_spec(vec3 normal, vec3 incoming, vec3 outgoing, vec3 color, float metallic, float roughness) {
vec3 N = normal;
vec3 L = outgoing;
vec3 V = incoming;
vec3 H = normalize(V + L);
vec3 F0 = vec3(0.04);
F0 = mix(F0, color, metallic);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0);
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001;
vec3 specular = F / denominator;
return specular;
}
vec3 BRDF_diff(vec3 normal, vec3 incoming, vec3 outgoing, vec3 color, float metallic, float roughness) {
vec3 N = normal;
vec3 L = outgoing;
vec3 V = incoming;
vec3 H = normalize(V + L);
vec3 F0 = vec3(0.04);
F0 = mix(F0, color, metallic);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0);
vec3 kD = vec3(1.0) - F;
kD *= 1.0 - metallic;
return (kD * color / PI);
}
vec3 BRDF(vec3 normal, vec3 incoming, vec3 outgoing, vec3 color, float metallic, float roughness) {
vec3 N = normal;
vec3 L = outgoing;
vec3 V = incoming;
vec3 H = normalize(V + L);
vec3 F0 = vec3(0.04);
F0 = mix(F0, color, metallic);
vec3 F = fresnelSchlick(max(dot(H,V), 0.0), F0);
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001;
vec3 specular = numerator / denominator;
vec3 kD = vec3(1.0) - F;
kD *= 1.0 - metallic;
return (kD * color / PI + specular);
}
vec3 filmic_aces(vec3 v)
{
v = v * mat3(
0.59719f, 0.35458f, 0.04823f,
0.07600f, 0.90834f, 0.01566f,
0.02840f, 0.13383f, 0.83777f
);
return (v * (v + 0.0245786f) - 9.0537e-5f) /
(v * (0.983729f * v + 0.4329510f) + 0.238081f) * mat3(
1.60475f, -0.53108f, -0.07367f,
-0.10208f, 1.10813f, -0.00605f,
-0.00327f, -0.07276f, 1.07602f
);
}
vec3 ImportanceSampleCosine(vec2 Xi, vec3 N) {
// Create basis from normal
vec3 B1, B2;
if (abs(N.x) < abs(N.y)) {
B1 = normalize(cross(N, vec3(1.0, 0.0, 0.0)));
} else {
B1 = normalize(cross(N, vec3(0.0, 1.0, 0.0)));
}
B2 = cross(N, B1);
// Cosine weighted sampling
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt(Xi.y);
float sinTheta = sqrt(1.0 - cosTheta * cosTheta);
// Convert to cartesian coordinates
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// Transform from local space to world space
return normalize(H.x * B1 + H.y * B2 + H.z * N);
}
void main()
{
const uvec2 resolution = uvec2(pushConstants.render_width, pushConstants.render_height);
const uvec2 pixel = gl_GlobalInvocationID.xy;
if((pixel.x >= resolution.x) || (pixel.y >= resolution.y)) {
return;
}
uint linearIndex = resolution.x * pixel.y + pixel.x;
uint rngState = (pushConstants.sample_batch * resolution.y + pixel.y) * 3 * (pushConstants.sample_batch + 20) * resolution.x + pixel.x;
const vec3 cameraOrigin = vec3(5.0, 5.0, 5.0);
const vec3 lookAt = vec3(2.5, 0.0, 2.5);
const vec3 generalDirection = normalize(lookAt - cameraOrigin);
const vec3 up = vec3(0.0, 1.0, 0.0);
const vec3 right = cross(generalDirection, up);
const float fovVerticalSlope = 1.0 / 5.0;
highp vec3 summedPixelColor = vec3(0.0);
const int NUM_SAMPLES = 10;
float depth = 99999999.0;
for(int sampleIdx = 0; sampleIdx < NUM_SAMPLES; sampleIdx++) {
// vec3 rayOrigin = cameraOrigin;
// const vec2 randomPixelCenter = vec2(pixel) + vec2(stepAndOutputRNGFloat(rngState), stepAndOutputRNGFloat(rngState));
// const vec2 screenUV = vec2(2.0 * (float(randomPixelCenter.x) + 0.5 - 0.5 * resolution.x) / resolution.y, //
// -(2.0 * (float(randomPixelCenter.y) + 0.5 - 0.5 * resolution.y) / resolution.y) // Flip the y axis
// );
// vec3 rayDirection = vec3(generalDirection + right * screenUV.x + up * screenUV.y);
// rayDirection = normalize(rayDirection);
vec2 Xi;
Xi.x = stepAndOutputRNGFloat(rngState);
Xi.y = stepAndOutputRNGFloat(rngState);
float rayDirectionArr[3] = layoutbuf[linearIndex].direction;
float rayOriginArr[3] = layoutbuf[linearIndex].origin;
float rayRoughness = layoutbuf[linearIndex].roughness;
vec3 rayDirection = vec3(rayDirectionArr[0], rayDirectionArr[1], rayDirectionArr[2]);
vec3 rayOrigin = vec3(rayOriginArr[0], rayOriginArr[1], rayOriginArr[2]);
if(rayRoughness < 0.98) {
vec3 H = ImportanceSampleGGX(Xi, rayDirection, max(0.01, rayRoughness));
vec3 L = normalize(2.0 * dot(rayDirection, H) * H - rayDirection);
rayDirection = L;
} else {
vec3 randV;
randV.x = stepAndOutputRNGFloat(rngState);
randV.y = stepAndOutputRNGFloat(rngState);
randV.z = stepAndOutputRNGFloat(rngState);
randV = normalize(randV);
rayDirection = randomHemispherePoint(randV, rayDirection);
}
vec3 attenuation = vec3(1.0);
// vec3 sunDir = normalize(vec3(0.7, 0.6, 0.6));
vec3 sunDir = normalize(vec3(pushConstants.sunPosition.x, pushConstants.sunPosition.y, pushConstants.sunPosition.z));
// vec3 sunDir = normalize(vec3(0.3, 0.6, 0.4));
vec3 randV;
randV.x = stepAndOutputRNGFloat(rngState);
randV.y = stepAndOutputRNGFloat(rngState);
randV.z = stepAndOutputRNGFloat(rngState);
randV = normalize(randV);
float regularization = 1.0;
for(int tracedSegments = 0; tracedSegments < 12; tracedSegments++) {
float raySelector = stepAndOutputRNGFloat(rngState);
rayQueryEXT rayQuery;
rayQueryInitializeEXT(rayQuery, tlas, gl_RayFlagsOpaqueEXT, 0xFF, rayOrigin, 0.0, rayDirection, 10000.0);
while(rayQueryProceedEXT(rayQuery)) {}
if(rayQueryGetIntersectionTypeEXT(rayQuery, true) == gl_RayQueryCommittedIntersectionTriangleEXT) {
HitInfo hitInfo = getObjectHitInfo(rayQuery);
if(tracedSegments == 0) {
depth = min(depth, length(hitInfo.worldPosition - rayOrigin));
if(depth < 0.01) {
break;
}
}
if(hitInfo.isWater == 1) {
// vec3 waterTangent = vec3(1.0, 0.0, 0.0);
// vec3 waterBinormal = vec3(0.0, 0.0, 1.0);
vec3 p = vec3(0.0);
// p += wave(vec4(1.0, 0.0, 0.06, 1.0), hitInfo.worldPosition, waterTangent, waterBinormal);
// p += wave(vec4(1.0, 1.0, 0.04, 0.3), hitInfo.worldPosition, waterTangent, waterBinormal);
// p += wave(vec4(1.0, 0.5, 0.04, 0.2), hitInfo.worldPosition, waterTangent, waterBinormal);
// vec3 waterNormal = normalize(cross(normalize(waterBinormal), normalize(waterTangent)));
hitInfo.worldNormal = faceforward(hitInfo.worldNormal, rayDirection, hitInfo.worldNormal);
rayOrigin = hitInfo.worldPosition + 0.01 * hitInfo.worldNormal;
vec3 oldDirection = rayDirection;
rayDirection = normalize(reflect(rayDirection, hitInfo.worldNormal));
rayQueryInitializeEXT(rayQuery, tlas, gl_RayFlagsOpaqueEXT, 0xFF, rayOrigin, 0.0, normalize(sunDir), 10000.0);
while(rayQueryProceedEXT(rayQuery)) {}
// if(rayQueryGetIntersectionTypeEXT(rayQuery, true) != gl_RayQueryCommittedIntersectionTriangleEXT) {
// summedPixelColor += max(dot(normalize(sunDir - oldDirection), waterNormal), 0.0) * attenuation * 0.3;
// }
attenuation *= hitInfo.color;
} else {
// Add emission:
summedPixelColor += attenuation * hitInfo.emission;
hitInfo.worldNormal = faceforward(hitInfo.worldNormal, rayDirection, hitInfo.worldNormal);
rayOrigin = hitInfo.worldPosition + 0.001 * hitInfo.worldNormal;
vec3 randV;
randV.x = stepAndOutputRNGFloat(rngState);
randV.y = stepAndOutputRNGFloat(rngState);
randV.z = stepAndOutputRNGFloat(rngState);
randV = normalize(randV);
vec3 oldDirection = rayDirection;
if(raySelector > 0.5) { // DIFFUSE
// Cast ray towards sun to check sun situation:
rayDirection = randomHemispherePoint(randV, hitInfo.worldNormal);
rayDirection = normalize(rayDirection);
float regularizationGamma = 0.5;
float bsdf_pdf = (1.0 / (PI * 2.0)) * 0.5;
if(bsdf_pdf != 0.0f) regularization *= max(1 - regularizationGamma / pow(bsdf_pdf, 0.25f), 0.0f);
hitInfo.roughness = 1.0f - ((1.0f - hitInfo.roughness) * regularization);
attenuation *= abs(dot(rayDirection, hitInfo.worldNormal));
attenuation *= BRDF_diff(hitInfo.worldNormal, -oldDirection, rayDirection, hitInfo.color, hitInfo.metallic, hitInfo.roughness);
attenuation /= bsdf_pdf;
rayQueryInitializeEXT(rayQuery, tlas, gl_RayFlagsOpaqueEXT, 0xFF, rayOrigin, 0.0, normalize(sunDir), 10000.0);
while(rayQueryProceedEXT(rayQuery)) {}
if(rayQueryGetIntersectionTypeEXT(rayQuery, true) != gl_RayQueryCommittedIntersectionTriangleEXT) {
summedPixelColor += attenuation * BRDF_diff(hitInfo.worldNormal, -oldDirection, sunDir, hitInfo.color, hitInfo.metallic, hitInfo.roughness) * vec3(pushConstants.sunIntensity) * max(0.0, dot(sunDir, hitInfo.worldNormal));
}
} else { // SPECULAR
if(hitInfo.roughness > 0.01) {
vec3 microfacetNormal = SampleVndf_GGX(vec2(randV.x, randV.y), -oldDirection, hitInfo.roughness, hitInfo.worldNormal);
rayDirection = reflect(oldDirection, microfacetNormal);
rayDirection = normalize(rayDirection);
float regularizationGamma = 0.5;
float bsdf_pdf = pdf_vndf_isotropic(rayDirection, -oldDirection, hitInfo.roughness, hitInfo.worldNormal) * 0.5;
if(bsdf_pdf != 0.0f) regularization *= max(1 - regularizationGamma / pow(bsdf_pdf, 0.25f), 0.0f);
hitInfo.roughness = 1.0f - ((1.0f - hitInfo.roughness) * regularization);
attenuation *= abs(dot(rayDirection, hitInfo.worldNormal));
attenuation *= BRDF_spec_ggx(hitInfo.worldNormal, -oldDirection, rayDirection, hitInfo.color, hitInfo.metallic, hitInfo.roughness);
attenuation /= bsdf_pdf;
} else {
vec3 microfacetNormal = hitInfo.worldNormal;
rayDirection = reflect(oldDirection, microfacetNormal);
rayDirection = normalize(rayDirection);
float regularizationGamma = 0.5;
hitInfo.roughness = 1.0f - ((1.0f - hitInfo.roughness) * regularization);
attenuation *= abs(dot(rayDirection, hitInfo.worldNormal));
attenuation *= BRDF_spec(hitInfo.worldNormal, -oldDirection, rayDirection, hitInfo.color, hitInfo.metallic, hitInfo.roughness);
attenuation /= 0.5;
}
rayQueryInitializeEXT(rayQuery, tlas, gl_RayFlagsOpaqueEXT, 0xFF, rayOrigin, 0.0, normalize(sunDir), 10000.0);
while(rayQueryProceedEXT(rayQuery)) {}
if(rayQueryGetIntersectionTypeEXT(rayQuery, true) != gl_RayQueryCommittedIntersectionTriangleEXT) {
summedPixelColor += attenuation * BRDF_spec_ggx(hitInfo.worldNormal, -oldDirection, sunDir, hitInfo.color, hitInfo.metallic, hitInfo.roughness) * vec3(pushConstants.sunIntensity) * max(0.0, dot(sunDir, hitInfo.worldNormal));
}
}
}
} else {
summedPixelColor += sky(rayDirection, sunDir) * attenuation;
// summedPixelColor += rayDirection * attenuation;
break;
}
}
}
// Get the index of this invocation in the buffer:
// Blend with the averaged image in the buffer:
vec3 averagePixelColor = vec3(summedPixelColor / float(NUM_SAMPLES));
if(any(isnan(averagePixelColor))) {
averagePixelColor = vec3(0.0, 0.0, 0.0);
}
if(pushConstants.sample_batch != 0)
{
averagePixelColor = (pushConstants.sample_batch * imageData[linearIndex] + vec3(averagePixelColor)) / (pushConstants.sample_batch + 1);
}
if(pushConstants.sample_batch == pushConstants.max_batch - 1) {
imageData[linearIndex] = averagePixelColor;
depthData[linearIndex] = vec3(depth, 0.0, 0.0);
} else {
imageData[linearIndex] = averagePixelColor;
}
}